DES

简介

DES加密是经典的基于Feistel网络结构的块加密,DES标准中字节的处理方式为大端序,DES接受一个64位(64bit)的明文和一个64位的key,返回64位的密文
在DES流程的开始,64位的key被传入PC1函数生成56位的真正密钥,因为原密钥中有8位是校验位
而这56位的密钥会再被拆分成左右两个各28位的密钥

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
pair<uint32_t, uint32_t> PC1(uint64_t key)
{
uint8_t pc1L[] = {57, 49, 41, 33, 25, 17, 9,
1, 58, 50, 42, 34, 26, 18,
10, 2, 59, 51, 43, 35, 27,
19, 11, 3, 60, 52, 44, 36};
uint8_t pc1R[] = {63, 55, 47, 39, 31, 23, 15,
7, 62, 54, 46, 38, 30, 22,
14, 6, 61, 53, 45, 37, 29,
21, 13, 5, 28, 20, 12, 4};
pair<uint32_t, uint32_t> keyPair{0, 0};
for (int i = 0; i < 28; i++)
{
keyPair.first |= ((key >> (64 - pc1L[i])) & 1) << (27 - i);
keyPair.second |= ((key >> (64 - pc1R[i])) & 1) << (27 - i);
}
return keyPair;
}

两个28位密钥分别左旋特定位数后进入PC2用于生成16个48位子密钥,PC2中有一个盒用于决定选择哪48位来作为密钥

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
void keyGen(pair<uint32_t, uint32_t> keyPair)
{
uint8_t offsets[] = {1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1};
for (int i = 0; i < 16; i++)
{
keyPair.first = leftRotate(keyPair.first, offsets[i]);
keyPair.second = leftRotate(keyPair.second, offsets[i]);
Keys[i] = PC2(((uint64_t)keyPair.first << 28) | keyPair.second);
}
}
uint64_t PC2(uint64_t key)
{
uint8_t pc2[] = {14, 17, 11, 24, 1, 5,
3, 28, 15, 6, 21, 10,
23, 19, 12, 4, 26, 8,
16, 7, 27, 20, 13, 2,
41, 52, 31, 37, 47, 55,
30, 40, 51, 45, 33, 48,
44, 49, 39, 56, 34, 53,
46, 42, 50, 36, 29, 32};
uint64_t subKey = 0;
for (int i = 0; i < 48; i++)
{
subKey |= ((key >> (56 - pc2[i])) & 1) << (47 - i);
}
return subKey;
}

至此为止密钥全部准备完毕,明文被分为左右各32位进入Feistel网络循环流程

1
2
3
4
5
6
7
8
9
10
11
12
13
14
void desEncrypt(uint64_t *plain, uint64_t key)
{
keyGen(PC1(key));
uint64_t afterIP = IP(*plain);
uint32_t l = afterIP >> 32, r = afterIP & 0xFFFFFFFF;
for (int i = 0; i < 16; i++)
{
pair<uint32_t, uint32_t> lr = goRound(l, r, Keys[i]);
l = lr.first;
r = lr.second;
}
*plain = ((uint64_t)r << 32) | l;
*plain = FP(*plain);
}

明文在进入和结束加密时还要经历IP,FP两次置换,这两次置换只是简单映射

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
uint64_t IP(uint64_t messagge)
{
uint64_t afterIP = 0;
uint8_t ip[] = {58, 50, 42, 34, 26, 18, 10, 2,
60, 52, 44, 36, 28, 20, 12, 4,
62, 54, 46, 38, 30, 22, 14, 6,
64, 56, 48, 40, 32, 24, 16, 8,
57, 49, 41, 33, 25, 17, 9, 1,
59, 51, 43, 35, 27, 19, 11, 3,
61, 53, 45, 37, 29, 21, 13, 5,
63, 55, 47, 39, 31, 23, 15, 7};
for (int i = 0; i < 64; i++)
{
afterIP |= ((messagge >> (64 - ip[i])) & 1) << (63 - i);
}
return afterIP;
}
uint64_t FP(uint64_t messagge)
{
uint64_t afterFP = 0;
uint8_t fp[] = {40, 8, 48, 16, 56, 24, 64, 32,
39, 7, 47, 15, 55, 23, 63, 31,
38, 6, 46, 14, 54, 22, 62, 30,
37, 5, 45, 13, 53, 21, 61, 29,
36, 4, 44, 12, 52, 20, 60, 28,
35, 3, 43, 11, 51, 19, 59, 27,
34, 2, 42, 10, 50, 18, 58, 26,
33, 1, 41, 9, 49, 17, 57, 25};
for (int i = 0; i < 64; i++)
{
afterFP |= ((messagge >> (64 - fp[i])) & 1) << (63 - i);
}
return afterFP;
}

Feistel轮函数如下所示

1
2
3
4
5
6
7
8
9
10
11
uint32_t feistel(uint32_t a, uint64_t key)
{
uint64_t t = expand(a) ^ key;
uint32_t afterS = S(t);
afterS = P(afterS);
return afterS;
}
pair<uint32_t, uint32_t> goRound(uint32_t l, uint32_t r, uint64_t key)
{
return {r, l ^ feistel(r, key)};
}

数据先经过E盒拓展为48位后与48位密钥异或,然后进入S盒重新映射为32位,最后由P盒再进行一轮置换后输出

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
uint64_t expand(uint32_t a)
{
uint8_t e[] = {32, 1, 2, 3, 4, 5,
4, 5, 6, 7, 8, 9,
8, 9, 10, 11, 12, 13,
12, 13, 14, 15, 16, 17,
16, 17, 18, 19, 20, 21,
20, 21, 22, 23, 24, 25,
24, 25, 26, 27, 28, 29,
28, 29, 30, 31, 32, 1};
uint64_t afterE = 0;
for (int i = 0; i < 48; i++)
{
afterE |= ((a >> (32 - e[i])) & 1) << (47 - i);
}
return afterE;
}

S盒有8个,每个S盒是一个4*16的结构,48位的输出被分为8个6位的块分别进入对应的S盒,每块的第1和第6个位用于索引行(0x00 ~ 0x11),其余四位用于索引列(0x0000 ~ 0x1111),S盒中的数都是4位的,最后合起来得到一个32位的输出

1
2
3
4
5
6
7
8
9
10
11
uint64_t S(uint64_t a)
{
uint32_t res = 0;
for (int i = 0; i < 8; i++)
{
uint8_t row = ((((a >> (i * 6)) & 0x20)) >> 4) | ((a >> (i * 6)) & 1);
uint8_t col = ((a >> (i * 6)) & 0x1E) >> 1;
res |= S_box[i][row * 16 + col] << (i * 4);
}
return res;
}

P置换就是再次打乱S盒的输出

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
uint32_t P(uint64_t a)
{
uint8_t p[] = {16, 7, 20, 21,
29, 12, 28, 17,
1, 15, 23, 26,
5, 18, 31, 10,
2, 8, 24, 14,
32, 27, 3, 9,
19, 13, 30, 6,
22, 11, 4, 25};
uint32_t afterP = 0;
for (int i = 0; i < 32; i++)
{
afterP |= ((a >> (32 - p[i])) & 1) << (31 - i);
}
return afterP;
}

至此DES的流程全部结束,按照图例的话如下图所示

特征

因为DES的代码过于庞大,且涉及大量位操作,在反编译器中观察DES的特征非常困难,但是DES有非常多的盒,其中部分盒是精心设计的,修改这部分盒会严重影响DES在对抗暴力破解时的安全性,所以我们可以通过这些一般不会修改的盒识别DES

S盒

S盒引入了非线性操作,且S盒的每一位都设计过用以抵抗差分和线性密码分析,一般不会修改S盒

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
uint8_t S_box[8][64] = 
{{14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13},
{15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9},
{10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12},
{7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14},
{2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3},
{12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13},
{4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12},
{13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11}};
P盒

P盒的特殊设计使得每一轮由同一个S盒输出的4个bit在下一轮都被分散到另外4个不同S盒中进行处理(增强扩散性)

1
2
3
4
5
6
7
8
9
uint8_t p[] = 
{16, 7, 20, 21,
29, 12, 28, 17,
1, 15, 23, 26,
5, 18, 31, 10,
2, 8, 24, 14,
32, 27, 3, 9,
19, 13, 30, 6,
22, 11, 4, 25};
E盒

E盒负责将32位的输入扩展到48位,对混淆能力由很大影响

1
2
3
4
5
6
7
8
9
uint8_t e[] = 
{32, 1, 2, 3, 4, 5,
4, 5, 6, 7, 8, 9,
8, 9, 10, 11, 12, 13,
12, 13, 14, 15, 16, 17,
16, 17, 18, 19, 20, 21,
20, 21, 22, 23, 24, 25,
24, 25, 26, 27, 28, 29,
28, 29, 30, 31, 32, 1};

实现

考虑到DES现在已经被证明不安全,且其加密过程严重依赖系统端序,DES标准为大端序,而现代计算机大多数为小端序,故不给出完整实现,如果遇到需要手动解密的DES,只需要根据Feistel网络的性质,将16个子密钥倒着使用即可解密

reference

DES-wikipedia

Author

SGSG

Posted on

2025-04-08

Updated on

2025-04-18

Licensed under